If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2+28t+194=0
a = 1; b = 28; c = +194;
Δ = b2-4ac
Δ = 282-4·1·194
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-2\sqrt{2}}{2*1}=\frac{-28-2\sqrt{2}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+2\sqrt{2}}{2*1}=\frac{-28+2\sqrt{2}}{2} $
| t^2+28t+198=0 | | p/5−22=-15 | | 3x-9=×(2)+7 | | p/5−22=–15 | | p5− 22=–15 | | -5+3t=2t | | n+12=-23 | | {x+5}(2)=10 | | x/7=1.4 | | 8+6d=d-5+5d | | 14.3+5n=4(n+2)+6n | | 2x=1x-8 | | (4x-6)1/2=2x-3 | | 8x+12=10x-11 | | 3r=343 | | 13+k=26 | | 5n=51153. | | -2(1-7x)=96 | | p(5)p=0.40 | | -2(x+9)+27=14-3x | | 5(x-0.1)=3(x+0.7) | | 6-3(n-7)÷4=1÷2n | | 2(x-6)-18=6-7x | | 5/6x+16=4/9x+,9 | | 91=5y+16 | | y–5=–8. | | -3(x+8)=45 | | 14=3v-16 | | 8x+4(x+2)=-44 | | 7x+59=275 | | 4x-6=-(-3x+5) | | 4(z−14)=16 |